Applications

- Process Industry
- Power Industry
- Chemical Industry
- Oil and Gas
- Metals and Mining
- Water and Waste WaterPulp and Paper
 - Marine
 - Steel Mills

Temporary Strainers

Pressures to 3705 PSIG Temperatures to 800°F

FEATURES

- Cone, basket & plate strainers
- 100% to 300% open area range (OAR) as standard
- Custom engineered designs available

MATERIALS

- Stainless Steel
- Carbon Steel
- Monel
- Hastelloy
- Other Alloys upon request

END CONNECTIONS

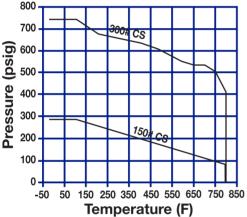
- Wafer Flat Faced
- Raised Face
- RTJ Flanged

SIZES

- 3/4" (20mm) up to 24" (600mm) as standard
- Larger sizes available upon request

APPLICATIONS

Water, oil systems


Other liquid systems

Protection of pumps, meters, valves and other similar equipment

OPTIONS

Custom engineered designs Customer specified Open Area Other Materials, Sizes and/or Configurations Other Screen and/or Mesh – See page

TC, TB AND TP SERIES TEMPORARY STRAINERS

PRESSURES TO 3600 PSIG (244.9 BARG) TEMPERATURES TO 800°F (427°C)

Standard and custom designs

Primarily used for new pipeline start-up or where solid loading is minimal.

Filtration down to 40 Microns available

Available in conical, basket and plate configurations

100% to 300% open area range (OAR) as standard 304SS construction is standard. Construction in other materials is available

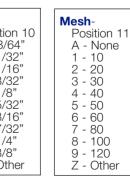
May be installed in horizontal or vertical pipelines

MODELS See Construction Details on page

T*1 – 100% open area - Flow inside to outside T*2 – 100% open area - Flow outside to inside T*3 – 100% open area - Bidirectional flow T*4 – 150% open area - Flow inside to outside T*5 – 150% open area - Flow outside to inside T*6 – 150% open area - Bidirectional flow T*7 – 200% open area - Flow inside to outside T*8 – 200% open area - Flow outside to inside T*9 – 200% open area - Flow outside to inside T*A - 300% open area - Flow inside to outside T*B - 300% open area - Flow inside to inside T*C - 300% open area - Bidirectional flow T*Z - Custom Configuration

* TC - Temporary Cone, TB - Temporary Basket, TP - Temporary Plate

APPLICABLE CODES


Canadian Registration Numbers (CRN) available

Note: Temporary Strainers are designed for start up service of new or revamped piping systems. Temporary Strainers are not intended to be used in a permanent application. Contact factory when permanent applications are required.

TC, TB, and TP Series Ordering Code

	T	B	<u> </u>	Material	Inlet Size	Class 1	Connec- tion	Dash -	Cover A	Perf 4	Mesh]
	1	2	З	4	5	6	7	8	9	10	11	
Model - Position 1 - 3 T*1 - 100% I/O flow T*2 - 100% O/I flow T*3 - 100% Bidirectiona T*4 - 150% I/O flow T*5 - 150% O/I flow T*6 - 150% Bidirectiona T*7 - 200% I/O flow T*8 - 200% O/I flow T*9 - 200% Bidirectiona T*A - 300% I/O flow T*B - 300% O/I flow T*Z - Custom Configura * TC - Temporary Cone TB - Temporary Plate	al al ation	V - C - H - Z - Inlet S D - G - H - Z - C - N - Q - N - N - P - 0	304 Cark 316 Mor Hast Othe Size* 3/4 1 1½ 2 2½ 3 4 5 6	rel telloy r - Positio Q - 8 R - 10 S - 12 T - 14 U - 16 V - 18 V - 24 Z - 01	dard) n 5 2 4 5 3 0 4	1 3 4 5 Z Con W b Z Das Con	- Wafe Smoo	n - Po er Flat th Finis ned to RF Fla <u>sition 8</u> sition	sition 7 Face sh fit anges)	- N mca	Perf - Positio B - 3/6 1 - 1/3 2 - 1/1 3 - 3/3 4 - 1/8 5 - 5/3 6 - 3/1 7 - 7/3 8 - 1/4 9 - 3/8 Z - Oth ote: Any ust be a alled out hd fill spe	64" 632" 16" 16" 16" 16" 16" 16" 16" 16
Only TP1, TP2, T	P3		act fac	ctory for								

other sizes.

Note: Any item outside this range must be a special and must be called out on the order (select "Z" and fill special field).

TC SERIES TEMPORARY CONE STRAINERS

SPECIFICATION

The strainer body shall be fabricated 304 stainless steel or other specified material. The strainer shall be the conical type with an extended identifier tag handle. The screen shall be size _____ perforated SS with _____ mesh liner. The flow shall be ______. The Strainer shall have an inlet size of ______ and Open Area Ratio of ______. The Temporary Cone Strainer shall be SSI TC Series.

MATERIALS OF CONSTRUCTION

(304 STAINLESS STEEL SHOWN *)

Ring	A240-304
Handle	
Peforated Plate	
Mesh (optional)	

DIMENSIONS inches (mm) AND WEIGHTS pounds (ka)*

* Other material available - consult factory

(80)

4

(100)

5

(125)

6

(150)

8

(200)

10

(250)

12

(300)

14

(350)

16

(400)

18

(450)

20

(500)

24

(600)

(133)

6¾

(171)

7%

(194)

8%

(219)

10%

(276)

13¼

(337)

16

(406)

17%

(441)

20%

(511)

211/4

(540)

23%

(597)

27%

(708)

(146)

7%

(191)

9%

(238)

10%

(263)

12%

(318)

15%

(397)

17%

(454)

19

(483)

21%

(555)

23¾

(603)

26%

(676)

30%

(784)

(165

8

(203)

9%

(244)

11%

(286)

14

(356

17

(432)

19%

(495)

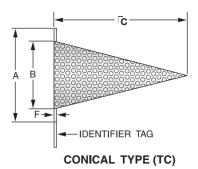
20%

(517)

221/2

(572)

25


(635)

27%

(695)

32%

(835)

Connections: 3/4" - Custom 150#, 300#, 600#, 900# and 1500# Wafer Flat Faced Smooth Flanges are standard

Designed to fit between RF Flanges

SIZE В \mathbf{F}^1 Weight С A 150/300# 600# 1500# 150% 200% 300% 900# 100% 3/ 1 2/3 21/ 3% 0.5 21/ 21/2 2% 2% 5/ 1% 1/2 (20) (54)(64) (67) (67) (16) (29) (43) (57) (86) (3) (0.2) 2½ 2¾ 3 1 (25)(64) (76) (70)3¼ 3¾ 1½ 3% (40)(83) (92)(95)2 4¼ 5% 4 (102) (50)(108) (140 21/2 4¾ 5 6% (121)(162)(65)(127)3 **5**¾ 6½ 5¼

(238)

11

(279)

121/4

(311)

14

(356)

15¾

(400)

17%

(445)

211/4

(540)

(330)

16

(406)

17

(432)

20

(508)

23

(584)

25

(635)

30

(762)

(432)

20%

(517)

22%

(575)

25%

(638)

27%

(702)

29%

(753)

35%

(899)

(508)

24

(610)

27

(686)

31

(787)

35

(889)

39

(991)

47

(1194)

(686)

33

(838)

36

(914)

41

(1041)

47

(1194)

53

(1346)

63

(1600)

(1016)

49

(1245)

54

(1372)

62

(1575)

71

(1803)

79

(2007)

95

(2413)

(3)

1/6

(3)

1/6

(3)

1/8

(3)

1/8

(3)

1/8

(3)

1/8

(3)

(3.2)

11

(5.0)

12

(5.4)

16

(7.3)

20

(9.1)

26

(11.8)

30

(13.6)

I Note: Uth	(**=)	(-)	(00)	(4.)	()	()	()	(0.)	/
request	0.5 (0.2)	1⁄8 (3)	5 (127)	3 1/3 (84)	2 ½ (64)	1 % (41)	³ ⁄4 (19)	3 (76))
	0.5 (0.2)	1⁄8 (3)	6¾ (171)	4½ (114)	3 ¾ (86)	2⅓ (56)	1 ¼ (32)	3 ¾ (95)	(1)
	0.5 (0.2)	1⁄8 (3)	9 ¹ / ₈ (232)	6 (152)	4 ½ (114)	3 (76)	1 ¾ (44)	5½ (140)	<u>;</u>))
	1 (0.5)	1 <u>/</u> 8 (3)	10 % (257)	6% (170)	5 (127)	3 ⅓ (81)	2¼ (57)	6% (162)	<u>,</u> 2)
	1 (0.5)	1⁄8 (3)	12 ¾ (324)	8½ (216)	6¼ (159)	4 (102)	2 ¾ (70)	6¾ (171)	<u>5</u>)
	2 (0.9)	1⁄8 (3)	17 (432)	10 % (270)	7% (200)	5½ (130)	3 ¾ (95)	8 ½ (206)	3)
The Open	2 (0.9)	1⁄8 (3)	21 (533)	1 4 (356)	10 % (257)	6½ (165)	4% (117)	9 % (251)	ś 4)
OA% =	3 (1.4)	1⁄8 (3)	26 (660)	17 (432)	13 (330)	8 ¹ / ₈ (207)	5 % (137)	11 (279)	/4 5)
Note: Ope	5 (2.3)	1⁄8 (3)	33 (838)	22 (559)	16 (406)	10 ½ (259)	7 % (187)	13 ¾ (349)	5)
1	7	1/8	40	27	20	13	9%	17	'

SCREEN OPENINGS

SIZE	STANDARD SCREEN	MATERIALS
3/4"- 8"	1/8" Perf.	22 Gauge ¹
10"- 24"	1/8" Perf.	16 Gauge ¹

Note: Other screens and mesh liners available upon request

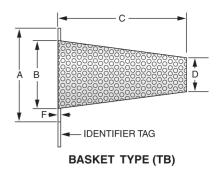
The Open Area % is calculated as follows: $OA\% = \left[\frac{\text{Screen Area x Open Area \%}}{\text{Area of Sch. 40/std. pipe}}\right] \times 100$ Note: Open Area % for 1/8" perf is 40%.

Dimensions shown are subject to change. Contact factory for certified prints when required. *Dimensions shown using 1/8" perf and no mesh. Open Area percentage will change with alternate perf and/or mesh. The change will equal the ratio of the open area of the perf/mesh compared to the open area of 1/8" mesh.

For Open Area percentages for perf/mesh see page Please contact factory for further information.

TB SERIES TEMPORARY BASKET STRAINERS

SPECIFICATION


The strainer body shall be fabricated 304 stainless steel or other specified material. The strainer shall be the basket type with an extended identifier tag handle. The screen shall be size ______ perforated SS with _____ mesh liner. The flow shall be ______. The Strainer shall have an inlet size of ______ and Open Area Ratio of ______. The Temporary Cone Strainer shall be SSI TB Series.

MATERIALS OF CONSTRUCTION

Handle	
Peforated Plate	
Mesh (optional)	A276-304
* Other material available - consult factory	

DIMENSIONS inches (mm) AND WEIGHTS pounds (kg)*

SIZE			A		В			с		D	F ¹	Weight
UILL	150/300#	600#	900#	1500#		100%	150%	200%	300%		•	Weight
³ ⁄ ₄	2½	2½	2 ⁵ / ₈	2%	5⁄8	³ ⁄ ₄	1½	1½	2¼	1/3	1/8	0.5
(20)	(54)	(64)	(67)	(67)	(16)	(19)	(29)	(38)	(57)	(8)	(3)	(0.2)
1	2½	2 ¾	3	3	³ ⁄4	1 ½	1 ⅔	2¼	3 %	3%	1½	0.5 (0.2)
(25)	(64)	(70)	(76)	(76)	(19)	(29)	(43)	(57)	(86)	(10)	(3)	
1 ½	3 ¼	3 %	3 ¾	3 ¾	1¼	1½	2 ¼	3	4½	%	1 <u>/</u> 8	0.5 (0.2)
(40)	(83)	(92)	(95)	(95)	(32)	(38)	(57)	(76)	(114)	(16)	(3)	
2	4	4¼	5½	5½	1 ¾	2	3	4	6	7⁄8	1%	0.5
(50)	(102)	(108)	(140)	(140)	(44)	(51)	(76)	(102)	(152)	(22)	(3)	(0.2)
2½	4 ¾	5	6 %	6 %	2 ¼	2⅓	3 %	4½	6¾	1 ½	1 <u>/</u> 8	1
(65)	(121)	(127)	(162)	(162)	(57)	(56)	(86)	(114)	(171)	(29)	(3)	(0.5)
3	5¼	5 ¾	6½	6 ¾	2 ¾	2 ¾	4¼	5 %	8 ½	1 %	1⁄8	1
(80)	(133)	(146)	(165)	(171)	(70)	(70)	(1)	(145)	(216)	(35)	(3)	(0.5)
4	6¾	7½	8	8 ½	3 ¾	3 ½	5 ½	7½	11	1 %	1%	2
(100)	(171)	(191)	(203)	(206)	(95)	(89)	(136)	(183)	(279)	(48)	(3)	(0.9)
5	7 %	9 %	9 %	9 %	4%	4½	6 ¾	9 ½	14	2 ¹ / ₃	1½	2
(125)	(194)	(238)	(244)	(251)	(117)	(114)	(171)	(232)	(356)	(59)	(3)	(0.9)
6	8 %	10 %	11 ¼	11	5 %	5½	8 ½	11%	17	2 ² / ₃	1½	3
(150)	(219)	(263)	(286)	(279)	(137)	(140)	(216)	(289)	(432)	(68)	(3)	(1.4)
8	10 %	12 ½	14	13 ¾	7 %	7	10 ² ⁄ ₃	15	22	3 ² ⁄ ₃	1%	5
(200)	(276)	(318)	(356)	(349)	(187)	(178)	(272)	(381)	(559)	(94)	(3)	(2.3)
10	13 ¼	15 %	17	17	9 %	8 %	14	18	27	4⅔	1½	7
(250)	(337)	(397)	(432)	(432)	(238)	(219)	(356)	(457)	(686)	(119)	(3)	(3.2)
12	16	17 %	19 ½	20 %	11	10 ½	17	22	33	5½	1½	11
(300)	(406)	(454)	(495)	(517)	(279)	(267)	(432)	(559)	(838)	(140)	(3)	(5.0)
14	17 %	19	20 %	22 %	12 ¼	11 ½	18	24	36	6 ½	1½	12
(350)	(441)	(483)	(517)	(575)	(311)	(292)	(457)	(610)	(914)	(156)	(3)	(5.4)
16	20 %	21 %	22½	25 ½	14	14	21	28	42	7	1½	16
(400)	(511)	(555)	(572)	(638)	(356)	(356)	(533)	(711)	(1067)	(178)	(3)	(7.3)
18	21 ¼	23 ¾	25	27 %	15 ¾	16	24	32	47	7%	1½	20
(450)	(540)	(603)	(635)	(702)	(400)	(406)	(610)	(813)	(1194)	(200)	(3)	(9.1)
20	23 ½	26 %	27 %	29 %	17 ½	17	27	35	53	8 ¾	1½	26
(500)	(597)	(676)	(695)	(753)	(445)	(432)	(686)	(889)	(1346)	(222)	(3)	(11.8)
24	27 %	30 %	32 ⁷ / ₈	35 %	21 ¼	21	32	42	64	10 %	1½	30
(600)	(708)	(784)	(835)	(899)	(540)	(533)	(813)	(1067)	(1626)	(270)	(3)	(13.6)

Connections: 3/4" - Custom 150#, 300#, 600#, 900# and 1500# Wafer Flat Faced Smooth Flanges are standard Designed to fit between RF Flanges

SCREEN OPENINGS

SIZE	STANDARD SCREEN	MATERIALS
3/4"- 8"	1/8" Perf.	22 Gauge1
10"- 24"	1/8" Perf.	16 Gauge ¹

Note: Other screens and mesh liners available upon request

The Open Area % is calculated as follows:

 $OA\% = \begin{bmatrix} \frac{\text{Screen Area x Open Area \%}}{\text{Area of Sch. 40/std. pipe}} \end{bmatrix} x 100$ Note: Open Area % for 1/8" perf is 40%.

Dimensions shown are subject to change. Contact factory for certified prints when required.

*Dimensions shown using 1/8" perf and no mesh. Open Area percentage will change with alternate perf and/or mesh. The change will equal the ratio of the open area of the perf/mesh compared to the open area of 1/8" mesh.

For Open Area percentages for perf/mesh see page

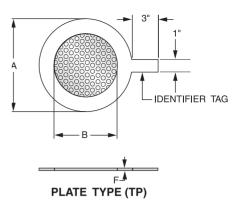
Please contact factory for further information.

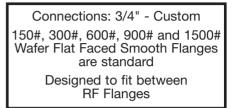
TP SERIES TEMPORARY PLATE STRAINERS

SPECIFICATION

The strainer body shall be fabricated 304 stainless steel or other specified material. The strainer shall be the plate type with an extended identifier tag handle. The screen shall be size _____ perforated SS with _____ mesh liner. The flow shall be ______. The Strainer shall have an inlet size of ______ and Open Area Ratio of ______. The Temporary Cone Strainer shall be SSI TP Series.

MATERIALS OF CONSTRUCTION


(304 Stainless Steel Shown *)


Ring		
Peforated Plate .		
Mesh (optional)		
* Other meterial evail	ble consult factory	

* Other material available - consult factory

SIZE			A		В	D	F'	Weight
	150/300#	600#	900#	1500#				
3⁄4	21⁄8	2½	2%	2%	5%	1½	1⁄8	0.5 (0.2)
(20)	(54)	(64)	(67)	(67)	(16)	(8)	(3)	
1	2½	2 ¾	3	3	³ ⁄ ₄	¾	1⁄8	0.5
(25)	(64)	(70)	(76)	(76)	(19)	(10)	(3)	(0.2)
1 ½	3¼	3 ⁵ ⁄ ₈	3 ¾	3 ¾	1 ¼	5%	1/s	0.5
(40)	(83)	(92)	(95)	(95)	(32)	(16)	(3)	(0.2)
2	4	4¼	5½	5½	1 ¾	7 <u>%</u>	1 <u>/</u> 8	0.5
(50)	(102)	(108)	(140)	(140)	(44)	(22)	(3)	(0.2)
2 ½	4¾	5	6 %	6 %	2¼	1 ½	1⁄8	1
(65)	(121)	(127)	(162)	(162)	(57)	(29)	(3)	(0.5)
3	5¼	5¾	6½	6¾	2 ¾	1%	1⁄8	1
(80)	(133)	(146)	(165)	(171)	(70)	(35)	(3)	(0.5)
4	6¾	7½	8	8 ¹ / ₈	3 ¾	1 %	1⁄8	2
(100)	(171)	(191)	(203)	(206)	(95)	(48)	(3)	(0.9)
5	7%	9 %	9 %	9 %	4%	21⁄3	1⁄8	2
(125)	(194)	(238)	(244)	(251)	(117)	(59)	(3)	(0.9)
6	8 %	10 %	11 ¼	11	5 %	2%	1⁄8	3
(150)	(219)	(263)	(286)	(279)	(137)	(68)	(3)	(1.4)
8	10 %	12 ½	14	13 ¾	7 %	3 %	1⁄8	5
(200)	(276)	(318)	(356)	(349)	(187)	(94)	(3)	(2.3)
10	13 ¼	15 %	17	17	9 %	4%	1⁄8	7
(250)	(337)	(397)	(432)	(432)	(238)	(119)	(3)	(3.2)
12	16	17 %	19 ½	20 %	11	5½	1⁄8	11
(300)	(406)	(454)	(495)	(517)	(279)	(140)	(3)	(5.0)
1 4	17 %	19	20 %	22 %	12 ¼	6 ½	1⁄8	12
(350)	(441)	(483)	(517)	(575)	(311)	(156)	(3)	(5.4)
16	20 ½	21 %	22 ½	25 ½	14	7	1⁄8	16
(400)	(511)	(555)	(572)	(638)	(356)	(178)	(3)	(7.3)
18	21 ¼	23 ¾	25	27 %	15 ¾	7 ⁷ / ₈	1⁄8	20
(450)	(540)	(603)	(635)	(702)	(400)	(200)	(3)	(9.1)
20	23 ½	26 %	27 %	29 %	17 ½	8 ¾	1⁄8	26
(500)	(597)	(676)	(695)	(753)	(445)	(222)	(3)	(11.8)
24	27 %	30 %	32 %	35 %	21 ¼	10 %	1⁄8	30
(600)	(708)	(784)	(835)	(899)	(540)	(270)	(3)	(13.6)

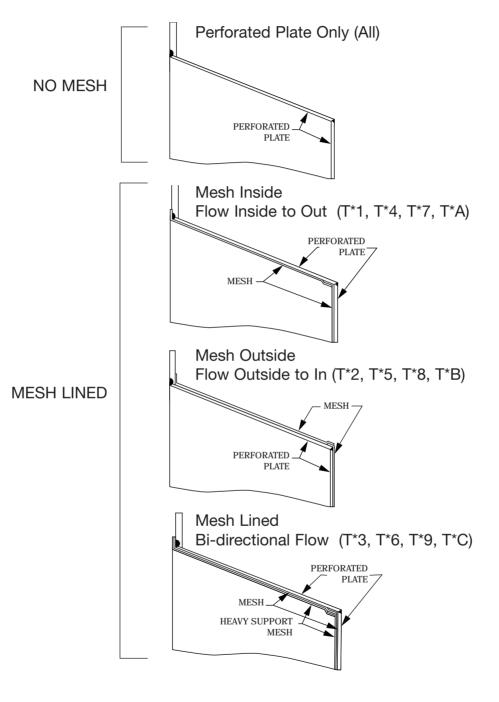
DIMENSIONS inches (mm) AND WEIGHTS pounds (kg)

SCREEN OPENINGS

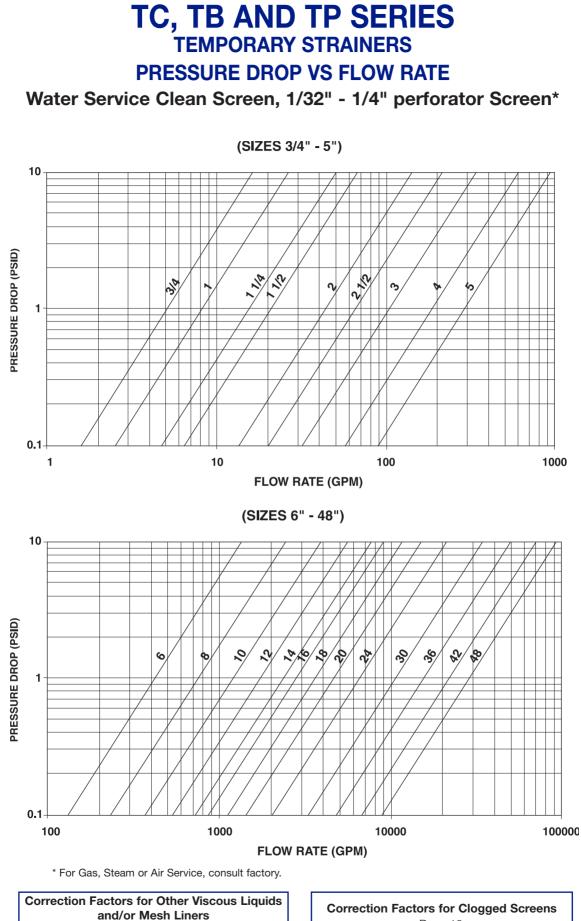
SIZE	STANDARD SCREEN	MATERIALS
3/4"- 8"	1/8" Perf.	22 Gauge1
10"- 24"	1/8" Perf.	16 Gauge ¹

Note: Other screens and mesh liners available upon request

The Open Area % is calculated as follows:


$$OA\% = \left[\frac{\text{Screen Area x Open Area \%}}{\text{Area of Sch. 40/std. pipe}}\right] \times 100$$

Note: Open Area % for 1/8" perf is 40%.


Dimensions shown are subject to change. Contact factory for certified prints when required.

TC, TB AND TP SERIES TEMPORARY STRAINERS STANDARD CONSTRUCTION DETAILS

- * TC Temporary Cone
- TB Temporary Basket
- TP Temporary Plate (Only TP1, TP2, TP3)

Page 10

Page 10

SSI Fabricated

TEMPORARY STRAINER TECHNICAL INFORMATION

SCREEN OPENINGS

100 Mesh - 30% O.A. 0.006" Openings
80 Mesh - 36% O.A. 0.008" Openings
60 Mesh - 38% O.A. 0.010" Openings
40 Mesh - 41% O.A. 0.016" Openings
30 Mesh - 45% O.A. 0.022" Openings
20 Mesh - 49% O.A. 0.035" Openings
0.027" Dia 23% O.A.
0.033" Dia 28% O.A.
3/64" Dia 36% O.A.
1/16" Dia 37% O.A.
3/32" Dia 39% O.A.
1/8" Dia 40% O.A.
5/32" Dia 58% O.A.
3/16" Dia 50% O.A.
1/4" Dia 40% O.A.

FACTORS TO CONSIDER

1 Purpose

If the strainer is being used for protection rather than direct filtration, standard screens will suffice in most applications.

2 Service

With services that require extremely sturdy screens, such as high pressure/temperature applications or services with high viscosities, perforated screens without mesh liners are recommended. If a mesh liner is required to obtain a certain level of filtration, then a trapped perf/mesh/perf combination is recommended.

3 Filtration Level

When choosing a perf. or a mesh/perf. combination, attention should be given to ensure overstraining does not occur. As a general rule, the specified level of filtration should be no smaller than half the size of the particle to be removed. If too fine a filtration is specified, the pressure drop through the strainer will increase very rapidly, possibly causing damage to the screen.

Screen openings other than those shown above are readily available. Various mesh sizes as fine as 5 micron and perforated plate as coarse as 1/2" Dia. are in inventory.

Screens are available in a wide range of materials. Screens of carbon steel, stainless steel (304, 316), alloy 20, monel 400, hastelloy C and titanium grade 2 are in inventory.

Custom manufactured screens are available upon request. Please consult factory.

TEMPORARY STRAINER PRESSURE DROP CORRECTION FACTORS

Mesh Lined Baskets and/or Fluids with a Viscosity other than Water

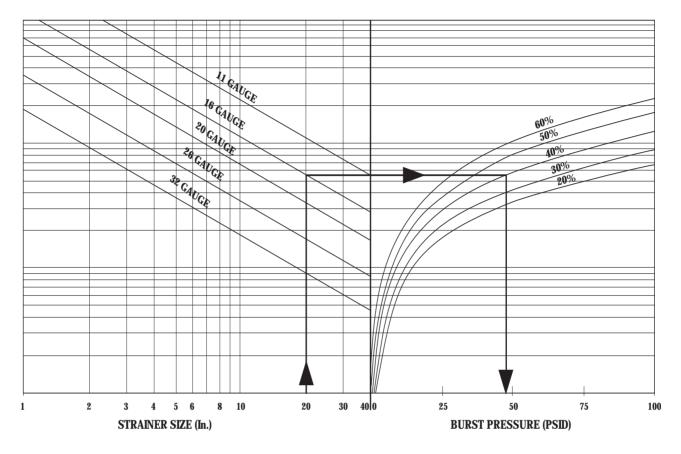
Centistokes	SSU	Unlined Perforated Basket	20 Mesh Lined Basket	40 Mesh Lined Basket	60 Mesh Lined Basket	80 Mesh Lined Basket	100 Mesh Lined Basket	200 Mesh Lined Basket
2	30 (water)	1	1.05	1.2	1.4	1.6	1.7	2
100	500	1.6	1.7	1.9	2.1	2.4	2.6	3.1
216	1000	1.7	2	2.2	2.4	2.6	2.8	3.3
433	2000	1.9	2.2	2.4	2.7	2.9	3.2	3.8
650	3000	2	2.3	2.6	2.9	3.2	3.5	4.1
1083	5000	2.2	2.6	3	3.5	4	4.5	5.3
2200	10000	2.5	3	3.5	4.2	5	6	7.1

1. Obtain water pressure drop from graphs on appropiate product page.

2. Multiply the pressure drop obtained from (1) by the specific gravity of the liquid.

3. Multiply the pressure drop from (2) by the appropriate correction factor for the mesh liner and/or viscosity.

lodel: TCIVMIW-A44 A)	From Pressure Drop Chart, pressure drop of water is 1.25
ize: 4"	Solution resource brop on art, pressure drop of water is 1.25 bosid Multiply by specific gravity; $1.25 \times 1 = 1.25$ psid
40 Mesh lines	From chart above, multiply 1.25 x 1.2 (correction factor) = 1.5 psid


CORRECTION FACTORS FOR CLOGGED SCREENS

%	Ratio of Free Screen Area to Pipe Area						
Clogged	10:1	8:1	6:1	4:1	3:1	2:1	1:1
10							3.15
20						1.15	3.9
30						1.4	5
40						1.8	6.65
50					1.25	2.5	9.45
60				1.15	1.8	3.7	14.5
70				1.75	2.95	6.4	26
80		1.1	1.75	3.6	6.25	14	58
90	2.3	3.45	6	13.5	24	55	

* Multiply values obtained from Pressure Drop Charts by the appropriate values shown below.

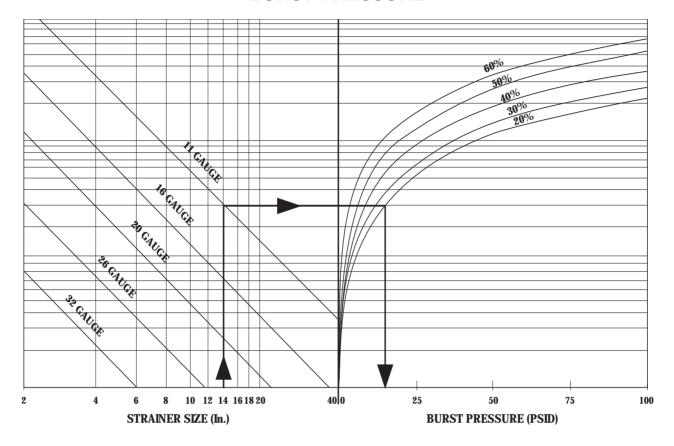
Example	Answer
Strainer Size: 6" Model: TCIVPIW-A4A	 A) The Pressure Drop Chart indicates a drop of .13 psid with standard screen.
Filtration:1/8" Perf.Flow rate:200 GPMService:Water% Clogged:60%	 B) The Effective Area of TCI is 100% or 1:1. C) Using Chart above we read the correction factor of 1:1 to be 14.5 at 60% clogged. D) Total pressure drop equals .13 x 14.5 = 1.885 psid.

TC SERIES TEMPORARY STRAINER BURST PRESSURE

Notes:

1. The above chart is to be used for strainers manufactured from perforated plate and is based on the formula:

$$P = \frac{2St \cos}{D + 1.2t \cos}$$


SOURCE: ASME Section VIII, Div. 1., Appendix 1.

- **P** = Burst Pressure, psi.
- **S** = Reduced allowable stress
- t = Thickness of perforated plate, in.
- $\mathbf{D} = \mathbf{Dimension} \ \mathbf{B} \mathbf{See} \ page 3$, in.
- 8 = 15 degree
- 2. The above chart is based on standard dimensions. Higher burst pressure ratings are available. Please contact factory.
- 3. The above chart is based on a screen material of stainless steel. No safety factor is incorporated. It is the responsibility of the user to determine an acceptable safety factor.
- 4. See Screen Openings Chart for % Open Area's of inventoried perforated plate.

Example:Strainer Size:20"Screen Thickness:16 gaugeScreen Material Open Area:40%	 A) Locate Strainer size. B) Follow vertical line to gauge thickness. C) Follow horizontal line to required perforation open area. D) Follow vertical line downward to read burst pressure. E) Burst pressure equals 48 psid.
---	--

TB SERIES TEMPORARY STRAINER BURST PRESSURE

Notes:

1. The above chart is to be used for strainers manufactured from perforated plate and is based on the formula:

$$\mathbf{t} = \mathbf{d} \sqrt{\frac{\mathbf{0.3P}}{\mathbf{S}}}$$

SOURCE: ASME Section VIII, Div. 1., UG-34.

- t = Thickness of perforated plate, in.
- $\mathbf{d} = \mathbf{Dimension B} \mathbf{See page 4}$, in.
- **P** = Burst Pressure, psi
- **S** = Reduced allowable stress, psi
- 2. The above chart is based on standard dimensions. Higher burst pressure ratings are available. Please contact factory.
- 3. The above chart is based on a screen material of stainless steel. No safety factor is incorporated. It is the responsibility of the user to determine an acceptable safety factor.
- 4. See Screen Openings Chart for % Open Area's of inventoried perforated plate.

Example:Strainer Size:14"Screen Thickness:11 gaugeScreen Material Open Area:20%	 A) Locate Strainer size. B) Follow vertical line to gauge thickness. C) Follow horizontal line to required perforation open area. D) Follow vertical line downward to read burst pressure. E) Burst pressure equals 15 psid.
---	--

